æ©æ¢°åŠç¿ãè§£æïŒåºæ¬æŠå¿µãã¢ã«ãŽãªãºã ãäžççå¿çšãç¶²çŸ ããåå¿è åãã¬ã€ããåºç€ãåŠã³ã仿¥ããããªãã®MLã®æ ãå§ããŸãããã
æ©æ¢°åŠç¿ã®è§£èªïŒåå¿è åãå®å šã¬ã€ã
æ©æ¢°åŠç¿ïŒMLïŒã¯ãæªæ¥çãªã³ã³ã»ãããããäžçäžã®ç£æ¥ã圢æããå ·äœçãªåãžãšæ¥éã«å€è²ãéããŸãããã¢ãžã¢ã®eã³ããŒã¹ãã©ãããã©ãŒã ã«ãããããŒãœãã©ã€ãºãããæšèŠããããšãŒãããã®éè¡ã«ãããäžæ£æ€åºã·ã¹ãã ãŸã§ãMLã¯ç§ãã¡ã®ç掻ãåãæ¹ãé©åœçã«å€ããŠããŸãããã®ã¬ã€ãã¯ãæè¡çãªèæ¯ã«é¢ããããäžçäžã®èªè ã«åããŠæ©æ¢°åŠç¿ã®åºæ¬ååãæç¢ºãã€åããããã玹ä»ãããã®è¬ãè§£ãæããããšãç®çãšããŠããŸãã
æ©æ¢°åŠç¿ãšã¯äœãïŒ
ãã®æ žå¿ã«ãããŠãæ©æ¢°åŠç¿ã¯äººå·¥ç¥èœïŒAIïŒã®äžåéã§ãããã³ã³ãã¥ãŒã¿ãæç€ºçã«ããã°ã©ã ãããããšãªãããŒã¿ããåŠç¿ã§ããããã«ããããšã«çŠç¹ãåœãŠãŠããŸããäºåã«å®çŸ©ãããã«ãŒã«ã«é Œã代ããã«ãMLã¢ã«ãŽãªãºã ã¯ãã¿ãŒã³ãèå¥ããäºæž¬ãè¡ããããå€ãã®ããŒã¿ã«è§Šããã«ã€ããŠæéã®çµéãšãšãã«ãã®æ§èœãåäžãããŸãã
åäŸã«æãããããªãã®ã ãšèããŠã¿ãŠãã ãããããããå¯èœãªã·ããªãªã«å¯ŸããŠå³æ Œãªæç€ºã®ã»ãããäžããããã§ã¯ãããŸããã代ããã«ãäŸã瀺ãããã£ãŒãããã¯ãäžããçµéšããåŠã°ããã®ã§ããæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãåæ§ã®æ¹æ³ã§åäœããŸãã
æ©æ¢°åŠç¿ã®äž»èŠãªæŠå¿µ
ãããã®äžå¿çãªæŠå¿µãçè§£ããããšã¯ãæ©æ¢°åŠç¿ã®äžçãããã²ãŒãããäžã§éåžžã«éèŠã§ãã
- ããŒã¿: MLã¢ã«ãŽãªãºã ãåããçæã§ããããã¯ã顧客ã®ååŒèšé²ããå»çç»åãç£æ¥æ©æ¢°ã®ã»ã³ãµãŒããŒã¿ãŸã§ããããããã®ã察象ãšãªããŸãã
- ç¹åŸŽé: ã¢ã«ãŽãªãºã ãäºæž¬ãè¡ãããã«äœ¿çšãããããŒã¿ã®åã ã®å±æ§ãç¹æ§ã§ããäŸãã°ãäœå® äŸ¡æ Œã®äºæž¬ã§ã¯ãç¹åŸŽéã«ã¯å¹³æ¹ãã£ãŒããå¯å®€ã®æ°ãå Žæãªã©ãå«ãŸãããããããŸããã
- ã¢ã«ãŽãªãºã : ããŒã¿ããåŠç¿ããç¹å®ã®æ°åŠçã¢ãã«ã§ããåé¡ã®çš®é¡ã«å¿ããŠãç°ãªãã¢ã«ãŽãªãºã ãé©ããŠããŸãã
- ã¢ãã«: ã¢ã«ãŽãªãºã ãèšç·Žããçµæã§ãããæ°ããæªç¥ã®ããŒã¿ã«å¯ŸããŠäºæž¬ãè¡ãããšãã§ãããã®ã§ãã
- ãã¬ãŒãã³ã°ïŒåŠç¿ïŒ: ã¢ã«ãŽãªãºã ããã¿ãŒã³ãšé¢ä¿æ§ãåŠç¿ã§ããããã«ãããŒã¿ãã¢ã«ãŽãªãºã ã«äžããããã»ã¹ã§ãã
- ãã¹ã: èšç·Žæžã¿ã¢ãã«ã®æ§èœãå¥ã®ããŒã¿ã»ããã§è©äŸ¡ãããã®ç²ŸåºŠãšæ±åèœåãè©äŸ¡ããããšã§ãã
æ©æ¢°åŠç¿ã®çš®é¡
æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã¯ãéåžžãäž»ã«3ã€ã®ã¿ã€ãã«åé¡ãããŸãã
1. æåž«ããåŠç¿
æåž«ããåŠç¿ã§ã¯ãã¢ã«ãŽãªãºã ã¯ã©ãã«ä»ãããŒã¿ããåŠç¿ããŸããã€ãŸããåããŒã¿ãã€ã³ãã察å¿ããåºåãŸãã¯ã¿ãŒã²ãã倿°ãšãã¢ã«ãªã£ãŠããŸããç®æšã¯ãå ¥åãæ£ç¢ºã«åºåã«ãããã³ã°ã§ãã颿°ãåŠç¿ããããšã§ããããã¯ãæ£è§£ãæããŠãããå çãšäžç·ã«åŠç¿ãããããªãã®ã§ãã
äŸ: éä¿¡è ã¢ãã¬ã¹ãä»¶åãå 容ãªã©ã®ç¹åŸŽéã«åºã¥ããŠãã¡ãŒã«ãã¹ãã ãåŠããäºæž¬ãããã©ãã«ä»ãããŒã¿ã¯ããã§ã«ã¹ãã ãåŠãã«åé¡ãããã¡ãŒã«ã§æ§æãããŸãã
äžè¬çãªã¢ã«ãŽãªãºã :
- ç·åœ¢ååž°: æ ªäŸ¡ã売äžé«ãªã©ã®é£ç¶å€ãäºæž¬ããããã«äœ¿çšãããŸããäŸ: ã ã³ãã€ãæ±äº¬ã®ãããªéœåžã§ã®äžåç£äŸ¡å€ããç«å°ãåºããèšåãªã©ã®èŠå ã«åºã¥ããŠäºæž¬ããã
- ããžã¹ãã£ãã¯ååž°: 顧客ãåºåãã¯ãªãã¯ãããã©ãããªã©ãäºå€ã®çµæãäºæž¬ããããã«äœ¿çšãããŸããäŸ: ãã©ãžã«ãåã¢ããªã«ã®éä¿¡äŒç€Ÿã«ããã顧客é¢åãäºæž¬ããã
- æ±ºå®æš: åé¡ãšååž°ã®äž¡æ¹ã®åé¡ã«äœ¿çšãããæ±ºå®ãšçµæãè¡šãæšã®ãããªæ§é ãäœæããŸããäŸ: å»ç蚺æ â æ£è ã®çç¶ãçšããŠç¹å®ã®ç æ°ã®å¯èœæ§ã倿ããã
- ãµããŒããã¯ã¿ãŒãã·ã³ (SVM): åé¡åé¡ã«äœ¿çšãããç°ãªãããŒã¿ã¯ã©ã¹ãåé¢ããæé©ãªå¢çãèŠã€ããŸããäŸ: ç»åèªè â ããŸããŸãªçš®é¡ã®åç©ã®ç»åãåé¡ããã
- ãã€ãŒããã€ãº: ãã€ãºã®å®çã«åºã¥ã確ççåé¡åšã§ãããã¹ãåé¡ãã¹ãã ãã£ã«ã¿ãªã³ã°ã«ãã䜿çšãããŸããäŸ: ããŸããŸãªèšèªã§ã®é¡§å®¢ã¬ãã¥ãŒã®ææ åæã
- ã©ã³ãã ãã©ã¬ã¹ã: è€æ°ã®æ±ºå®æšãçµã¿åãããŠç²ŸåºŠãšå ç¢æ§ãåäžãããã¢ã³ãµã³ãã«åŠç¿æ³ã§ãã
2. æåž«ãªãåŠç¿
æåž«ãªãåŠç¿ã§ã¯ãã¢ã«ãŽãªãºã ã¯ã©ãã«ãªãããŒã¿ããåŠç¿ããŸããã€ãŸããäºåã«å®çŸ©ãããåºåãã¿ãŒã²ãã倿°ããããŸãããç®æšã¯ãããŒã¿å ã®é ãããã¿ãŒã³ãæ§é ããŸãã¯é¢ä¿æ§ãçºèŠããããšã§ããããã¯ãã¬ã€ããªãã§æ°ããç°å¢ãæ¢çŽ¢ãããããªãã®ã§ãã
äŸ: 顧客ãè³Œå ¥è¡åã«åºã¥ããŠç°ãªãã°ã«ãŒãã«ã»ã°ã¡ã³ãåãããã©ãã«ãªãããŒã¿ã¯ãäºåã«å®çŸ©ãããã»ã°ã¡ã³ããªãã®é¡§å®¢ååŒèšé²ã§æ§æãããŸãã
äžè¬çãªã¢ã«ãŽãªãºã :
- ã¯ã©ã¹ã¿ãªã³ã°: é¡äŒŒããããŒã¿ãã€ã³ããã°ã«ãŒãåããŸããäŸ: äžççãªã¿ãŒã²ããããŒã±ãã£ã³ã°ãã£ã³ããŒã³ã®ããã®é¡§å®¢ã»ã°ã¡ã³ããŒã·ã§ã³ãç°ãªãå°åã®è³Œè²·ãã¿ãŒã³ãåæããŠåºå掻åã調æŽããã
- 次å åæž: éèŠãªæ å ±ãä¿æããªããç¹åŸŽã®æ°ãæžãããŸããäŸ: ç»åå§çž®ã髿¬¡å ããŒã¿ã»ããã§ã®ç¹åŸŽéžæã
- ã¢ãœã·ãšãŒã·ã§ã³ã«ãŒã«ãã€ãã³ã°: ããŒã¿ã»ããå ã®ã¢ã€ãã éã®é¢ä¿ãçºèŠããŸããäŸ: ããŒã±ãããã¹ã±ããåæ â ããŸããŸãªåœã®ã¹ãŒããŒããŒã±ããã§äžç·ã«è³Œå ¥ãããããšãå€ãååãç¹å®ããã
- äž»æååæ (PCA): çŽäº€å€æãçšããŠãçžé¢ããŠããå¯èœæ§ã®ãã倿°ã®èŠ³æž¬å€ã®ã»ããããäž»æåãšåŒã°ããç·åœ¢ã«ç¡çžé¢ãªå€æ°ã®å€ã®ã»ããã«å€æããçµ±èšçææ³ã§ãã
3. 匷ååŠç¿
匷ååŠç¿ã§ã¯ããšãŒãžã§ã³ãã¯å ±é ¬ãæå€§åããããã«ç°å¢å ã§æææ±ºå®ãè¡ãããšãåŠç¿ããŸãããšãŒãžã§ã³ãã¯ç°å¢ãšçžäºäœçšããå ±é ¬ãŸãã¯ããã«ãã£ã®åœ¢ã§ãã£ãŒãããã¯ãåãåããããã«å¿ããŠè¡åã調æŽããŸããããã¯ããè€çŸãšçœ°ã§ç¬ãèšç·Žãããããªãã®ã§ãã
äŸ: ããããã«è¿·è·¯ãããã²ãŒãããããã«èšç·ŽããããšãŒãžã§ã³ãã¯ç®æšã«å°éãããšå ±é ¬ãåãåããé害ç©ã«ã¶ã€ãããšããã«ãã£ãåãåããŸãã
äžè¬çãªã¢ã«ãŽãªãºã :
- QåŠç¿: ç¹å®ã®ç¶æ ã§ç¹å®ã®è¡åãåã£ãå Žåã®æåŸ å ±é ¬ãäºæž¬ããæé©ãªè¡å䟡å€é¢æ°ãåŠç¿ããŸãã
- ãã£ãŒãQãããã¯ãŒã¯ (DQN): è€éãªç°å¢ã§Qå€é¢æ°ãè¿äŒŒããããã«æ·±å±€ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŸãã
- SARSA (State-Action-Reward-State-Action): å®éã«åãããè¡åã«åºã¥ããŠQå€ãæŽæ°ãããªã³ããªã·ãŒåŠç¿ã¢ã«ãŽãªãºã ã§ãã
æ©æ¢°åŠç¿ã®ã¯ãŒã¯ãããŒ
æåããæ©æ¢°åŠç¿ã¢ãã«ãæ§ç¯ããã«ã¯ãéåžžã以äžã®ã¹ããããå«ãŸããŸãã
- ããŒã¿åé: ããŸããŸãªãœãŒã¹ããé¢é£ããŒã¿ãåéããŸããããã«ã¯ãããŒã¿ããŒã¹ããã®ããŒã¿åéããŠã§ãã¹ã¯ã¬ã€ãã³ã°ããŸãã¯ã»ã³ãµãŒã®äœ¿çšãå«ãŸããå ŽåããããŸãã
- ããŒã¿ååŠç: åæã®ããã«ããŒã¿ãã¯ã¬ã³ãžã³ã°ãå€æãæºåããŸããããã«ã¯ãæ¬ æå€ã®åŠçãå€ãå€ã®é€å»ãããŒã¿ã®æ£èŠåãªã©ãå«ãŸããå ŽåããããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°: åé¡ã«é¢é£ããæ°ããç¹åŸŽéãéžæã倿ãäœæããŸããããã«ã¯ããã¡ã€ã³ç¥èãšããŒã¿ã®çè§£ãå¿ èŠã§ãã
- ã¢ãã«éžæ: åé¡ã®çš®é¡ãšããŒã¿ã®ç¹æ§ã«åºã¥ããŠãé©åãªæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ãéžæããŸãã
- ã¢ãã«ãã¬ãŒãã³ã°: æºåãããããŒã¿ã§ã¢ã«ãŽãªãºã ããã¬ãŒãã³ã°ããŸããããã«ã¯ããã¬ãŒãã³ã°ã»ããã§ã®ãšã©ãŒãæå°åããããã«ã¢ãã«ã®ãã©ã¡ãŒã¿ã調æŽããããšãå«ãŸããŸãã
- ã¢ãã«è©äŸ¡: èšç·Žæžã¿ã¢ãã«ã®æ§èœãå¥ã®ãã¹ãã»ããã§è©äŸ¡ããŸããããã«ãããã¢ãã«ãæ°ããæªç¥ã®ããŒã¿ã«å¯ŸããŠã©ã®çšåºŠæ±åã§ãããã®æšå®å€ãåŸãããŸãã
- ã¢ãã«ãããã€: èšç·Žæžã¿ã¢ãã«ãæ¬çªç°å¢ã«ãããã€ããå®äžçã®ããŒã¿ã§äºæž¬ãè¡ãããã«äœ¿çšã§ããããã«ããŸãã
- ã¢ãã«ç£èŠ: ãããã€ãããã¢ãã«ã®æ§èœãç¶ç¶çã«ç£èŠãããã®ç²ŸåºŠãšé¢é£æ§ãç¶æããããã«å¿ èŠã«å¿ããŠåãã¬ãŒãã³ã°ããŸãã
æ¥ç暪æçãªæ©æ¢°åŠç¿ã®å¿çš
æ©æ¢°åŠç¿ã¯å¹ åºãæ¥çã§å¿çšãããŠãããããžãã¹ã®éå¶æ¹æ³ãæææ±ºå®ãå€é©ããŠããŸãã以äžã«ããã€ãã®äŸãæããŸãã
- ãã«ã¹ã±ã¢: ç æ°ã®èšºæãæ£è ã®äºåŸäºæž¬ãæ²»çèšç»ã®åå¥åãäŸãšããŠãã€ã³ãã§ã®å»çç»åããã®çæ€åºãç±³åœã§ã®ç é¢åå ¥é¢çã®äºæž¬ãäžçäžã§ã®åå¥åãããè¬ç©çæ³ã®éçºãªã©ããããŸãã
- éè: äžæ£æ€åºãä¿¡çšãªã¹ã¯è©äŸ¡ãåå¥åãããéèã¢ããã€ã¹ã®æäŸãäŸãšããŠããšãŒãããã®éè¡ã䜿çšããäžæ£æ€åºã·ã¹ãã ãã¢ããªã«ã®è²žä»æ©é¢ã䜿çšããä¿¡çšã¹ã³ã¢ãªã³ã°ã¢ãã«ãäžçäžã®æè³äŒç€Ÿãæ¡çšããã¢ã«ãŽãªãºã ååŒæŠç¥ãªã©ããããŸãã
- å°å£²: ååæšèŠã®ããŒãœãã©ã€ãºãäŸ¡æ Œèšå®ã®æé©åããµãã©ã€ãã§ãŒã³å¹çã®åäžãäŸãšããŠãäžåœã®eã³ããŒã¹ãã©ãããã©ãŒã ã§ã®ããŒãœãã©ã€ãºãããååæšèŠãåç±³ã®å°å£²æ¥è ã䜿çšããåçäŸ¡æ Œèšå®æŠç¥ãäžçäžã®ç©æµäŒç€Ÿã䜿çšãããµãã©ã€ãã§ãŒã³æé©åãœãªã¥ãŒã·ã§ã³ãªã©ããããŸãã
- 補é : èšåæ éã®äºæž¬ãçç£ããã»ã¹ã®æé©åãå質管çã®åäžãäŸãšããŠããã€ãã®å·¥å Žã§äœ¿çšãããäºç¥ä¿å šã·ã¹ãã ãæ¥æ¬ã®è£œé å·¥å Žã§äœ¿çšãããããã»ã¹æé©åãœãªã¥ãŒã·ã§ã³ãäžçäžã®èªåè»å·¥å Žã§äœ¿çšãããå質管çã·ã¹ãã ãªã©ããããŸãã
- 亀é: äº€éæµã®æé©åãèªåé転è»ã®éçºãç©æµå¹çã®åäžãäŸãšããŠãäžçäžã®éœåžã§äœ¿çšããã亀é管çã·ã¹ãã ãç±³åœãšäžåœã®äŒæ¥ãéçºäžã®èªåé転æè¡ãäžçäžã®æµ·éäŒç€Ÿã䜿çšããç©æµæé©åãœãªã¥ãŒã·ã§ã³ãªã©ããããŸãã
- 蟲æ¥: äœç©åéã®æé©åãæ°è±¡ãã¿ãŒã³ã®äºæž¬ãçæŒå¹çã®åäžãäŸãšããŠããªãŒã¹ãã©ãªã¢ã®èŸ²å®¶ã䜿çšãã粟å¯èŸ²æ¥æè¡ãã¢ããªã«ã®èŸ²æ¥å°åã§äœ¿çšãããæ°è±¡äºæž¬ã¢ãã«ãäžçäžã®æ°Žäžè¶³å°åã§äœ¿çšãããçæŒæé©åã·ã¹ãã ãªã©ããããŸãã
- æè²: åŠç¿äœéšã®åå¥åããªã¹ã¯ã®ããåŠçã®ç¹å®ãç®¡çæ¥åã®èªååãäŸãšããŠãäžçäžã®åŠæ ¡ã§äœ¿çšãããåå¥ååŠç¿ãã©ãããã©ãŒã ã倧åŠã§äœ¿çšãããåŠçã®æçžŸäºæž¬ã¢ãã«ããªã³ã©ã€ã³åŠç¿ãã©ãããã©ãŒã ã§äœ¿çšãããèªåæ¡ç¹ã·ã¹ãã ãªã©ããããŸãã
æ©æ¢°åŠç¿ãå§ããã«ã¯
æ©æ¢°åŠç¿ã«ã€ããŠããã«åŠã³ããå Žåã¯ããªã³ã©ã€ã³ããã³ãªãã©ã€ã³ã§å€ãã®ãªãœãŒã¹ãå©çšå¯èœã§ãã
- ãªã³ã©ã€ã³ã³ãŒã¹: CourseraãedXãUdacityãªã©ã®ãã©ãããã©ãŒã ã§ã¯ãå ¥éã¬ãã«ããäžçŽã¬ãã«ãŸã§ãå¹ åºãæ©æ¢°åŠç¿ã³ãŒã¹ãæäŸããŠããŸãã
- æžç±: Aurélien Géronèã®ãHands-On Machine Learning with Scikit-Learn, Keras & TensorFlowãããHastieãTibshiraniãFriedmanèã®ãThe Elements of Statistical Learningããªã©ãæ©æ¢°åŠç¿ã®åºç€ãã«ããŒããåªããæžç±ã倿°ãããŸãã
- ãã¥ãŒããªã¢ã«: Towards Data ScienceãKaggleãAnalytics Vidhyaãªã©ã®ãŠã§ããµã€ãã§ã¯ãããŸããŸãªæ©æ¢°åŠç¿ã®ãããã¯ã«é¢ãããã¥ãŒããªã¢ã«ãèšäºãããã°æçš¿ãæäŸããŠããŸãã
- ãªãŒãã³ãœãŒã¹ããŒã«: Pythonã¯æ©æ¢°åŠç¿ã§æã人æ°ã®ããããã°ã©ãã³ã°èšèªã§ãããScikit-learnãTensorFlowãPyTorchãªã©ã®å€ãã®ãªãŒãã³ãœãŒã¹ã©ã€ãã©ãªãå©çšå¯èœã§ããRãç¹ã«çµ±èšèšç®ã§äººæ°ã®ããéžæè¢ã§ãã
- ã³ãã¥ããã£: Redditã®r/MachineLearningãStack Overflowãªã©ã®ãªã³ã©ã€ã³ã³ãã¥ããã£ã«åå ããŠãä»ã®æ©æ¢°åŠç¿æå¥œå®¶ãšã€ãªããã質åãããããšãã§ããŸãã
課é¡ãšèæ ®äºé
æ©æ¢°åŠç¿ã¯èšãç¥ããªãå¯èœæ§ãç§ããŠããŸããããã®å®è£ ã«äŒŽã課é¡ãšèæ ®äºé ãèªèããããšãéèŠã§ãã
- ããŒã¿å質: æ©æ¢°åŠç¿ã¢ãã«ã¯ããã¬ãŒãã³ã°ã«äœ¿çšãããããŒã¿ã®å質ã«å·Šå³ãããŸããè³ªã®æªãããŒã¿ã¯ãäžæ£ç¢ºãªäºæž¬ãåã£ãçµæã«ã€ãªããå¯èœæ§ããããŸãã
- ãã€ã¢ã¹ãšå ¬å¹³æ§: æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã¯ãããŒã¿ã«ååšããæ¢åã®ãã€ã¢ã¹ãæ°žç¶ãããå¢å¹ ãããå¯èœæ§ããããäžå ¬å¹³ãŸãã¯å·®å¥çãªçµæã«ã€ãªããå¯èœæ§ããããŸããMLã¢ãã«ã®éçºãšå±éã«ãããŠããã€ã¢ã¹ã«å¯ŸåŠããå ¬å¹³æ§ã確ä¿ããããšãäžå¯æ¬ ã§ãã
- 説æå¯èœæ§: äžéšã®æ©æ¢°åŠç¿ã¢ãã«ãç¹ã«æ·±å±€åŠç¿ã¢ãã«ã¯ãè§£éãšçè§£ãå°é£ã§ããããã«ããããšã©ãŒã®ãããã°ãä¿¡é Œã®æ§ç¯ã説æè²¬ä»»ã®ç¢ºä¿ãå°é£ã«ãªãå¯èœæ§ããããŸãã
- ãã©ã€ãã·ãŒ: æ©æ¢°åŠç¿ã¢ãã«ã¯ãå人ã«é¢ããæ©å¯æ å ±ãæããã«ããå¯èœæ§ããããŸãããŠãŒã¶ãŒã®ãã©ã€ãã·ãŒãä¿è·ããGDPRãCCPAãªã©ã®ããŒã¿ä¿è·èŠå¶ãéµå®ããããšãéèŠã§ãã
- å«ççèæ ®äºé : æ©æ¢°åŠç¿ã¯ãéçšã®åªå€±ãèªåŸåå µåšãæè¡ã®èª€çšã®å¯èœæ§ãªã©ãå€ãã®å«ççæžå¿µãåŒãèµ·ãããŸããæ©æ¢°åŠç¿ã®å«çç圱é¿ãèæ ®ãã責任ããAIã®å®è·µãéçºããããšãéèŠã§ãã
- éåŠç¿ïŒãªãŒããŒãã£ããã£ã³ã°ïŒ: ã¢ãã«ããã¬ãŒãã³ã°ããŒã¿ãéå°ã«åŠç¿ãããããšãæ°ããæªç¥ã®ããŒã¿ã«å¯ŸããŠæ§èœãäœäžããããšããããŸãããããéåŠç¿ãšåŒã³ãŸãã亀差æ€èšŒãæ£ååãªã©ã®ãã¯ããã¯ãéåŠç¿ãé²ãã®ã«åœ¹ç«ã¡ãŸãã
- èšç®ãªãœãŒã¹: è€éãªæ©æ¢°åŠç¿ã¢ãã«ã®ãã¬ãŒãã³ã°ã«ã¯ãGPUã倧éã®ã¡ã¢ãªãªã©ãããªãã®èšç®ãªãœãŒã¹ãå¿ èŠã«ãªãå ŽåããããŸãã
æ©æ¢°åŠç¿ã®æªæ¥
æ©æ¢°åŠç¿ã¯æ¥éã«é²åããŠããåéã§ãããæããæªæ¥ãåŸ ã£ãŠããŸããããŒã¿ãããè±å¯ã«ãªããèšç®èœåãå¢å ããã«ã€ããŠãæ¥çå šäœã§ããã«é©æ°çãªæ©æ¢°åŠç¿ã®å¿çšãèŠãããããšãæåŸ ãããŸããæ³šç®ãã¹ãäž»èŠãªãã¬ã³ãã«ã¯ã以äžã®ãããªãã®ããããŸãã
- 説æå¯èœãªAI (XAI): æ©æ¢°åŠç¿ã¢ãã«ãããéæã§è§£éå¯èœã«ããæè¡ã®éçºã
- é£ååŠç¿: ããŒã¿ãçŽæ¥ã¢ã¯ã»ã¹ãŸãã¯å ±æããããšãªãã忣ããããŒã¿ã§æ©æ¢°åŠç¿ã¢ãã«ããã¬ãŒãã³ã°ããããšã
- èªååãããæ©æ¢°åŠç¿ (AutoML): æ©æ¢°åŠç¿ã¢ãã«ã®æ§ç¯ãšå±éã®ããã»ã¹ãèªååããããšã
- ãšããžã³ã³ãã¥ãŒãã£ã³ã°: ã¹ããŒããã©ã³ãã»ã³ãµãŒãªã©ã®ãšããžããã€ã¹ã«æ©æ¢°åŠç¿ã¢ãã«ããããã€ãããªã¢ã«ã¿ã€ã ã®åŠçãšæææ±ºå®ãå¯èœã«ããããšã
- AIå«çãšã¬ããã³ã¹: AIã®è²¬ä»»ããéçºãšå±éã®ããã®ãã¬ãŒã ã¯ãŒã¯ãšã¬ã€ãã©ã€ã³ã®éçºã
çµè«
æ©æ¢°åŠç¿ã¯ãäžçäžã®ç£æ¥ãå€é©ãã人ã ã®ç掻ãåäžãããå¯èœæ§ãç§ãã匷åãªãã¯ãããžãŒã§ããæ©æ¢°åŠç¿ã®åºæ¬çãªæŠå¿µãã¢ã«ãŽãªãºã ãããã³å¿çšãçè§£ããããšã§ããã®å¯èœæ§ãè§£ãæŸã¡ã責任ããéçºãšå±éã«è²¢ç®ããããšãã§ããŸãããã®ã¬ã€ãã¯ãåå¿è ã«ãšã£ãŠåŒ·åºãªåºç€ãæäŸãããšããµã€ãã£ã³ã°ãªæ©æ¢°åŠç¿ã®äžçãããã«æ¢æ±ããããã®è¶³ããããšãªããŸãã
å®è·µçãªæŽå¯:
- å®è·µçãªçµéšãç©ãããã«ãå°ãããæç¢ºã«å®çŸ©ãããåé¡ããå§ããŸãããã
- ããŒã¿ãçè§£ãã广çã«ååŠçããããšã«éäžããŸãããã
- ããŸããŸãªã¢ã«ãŽãªãºã ãšè©äŸ¡ææšã詊ããŠã¿ãŸãããã
- ãªã³ã©ã€ã³ã³ãã¥ããã£ã«åå ããKaggleã³ã³ããã£ã·ã§ã³ã«åå ããŸãããã
- ãã®åéã®ææ°ã®ç ç©¶ãéçºã«åžžã«ã¢ã³ããã匵ã£ãŠãããŸãããã